Search This Blog

Thursday, June 1, 2023

How Fiber-Optic Sensing and New Materials Could Reduce the Cost of Floating Offshore Wind

 Berkeley Lab News Release:


Researchers are giving floating offshore wind turbines abilities to self-monitor and self-heal
MEDIA RELATIONS | (510) 486-5183 | JUNE 1, 2023
Shake table tests at the Richmond Field Station are used to mimic ocean waves and test turbine stability. They also test the ability of fiber optic sensing to measure the response of the turbines. (Courtesy of Yuxin Wu)
– By Julie Bobyock and Christina Procopiou

In shallow waters, offshore wind turbines are fixed to the ocean floor. However, in deep water areas where winds are typically stronger and have the capacity to reap more than double the energy, floating offshore wind turbines must be moored to the seabed where the ocean is too deep for fixed structures. Floating offshore wind (FOSW) is one of the most promising clean energy technologies with a potential market worth nearly $16 billion – but science and technology solutions are needed to help reduce the cost of developing, deploying, and maintaining these complex systems.
Scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) are developing sensing technologies consisting of fiber-optic cables, which could be installed on FOSW structures that have been planned off the California coast. This would allow structures to self-monitor damaging conditions that could lead to costly repairs and would also help gauge how FOSW impacts marine mammals by detecting their activity. 

In collaboration with experts in materials science, engineering, geophysics, and FOSW developers from around the world, Berkeley Lab scientist Yuxin Wu is developing solutions to reduce the cost of FOSW development and deployment, while minimizing potential environmental impacts.
Yuxin Wu (Courtesy of Yuxin Wu)
Q. What is the biggest obstacle to expanding floating offshore wind technologies?

Wu: So far, there have been few FOSW deployments because the technology is in the early stages of development. Currently, no such systems have been deployed anywhere near 1000 meters in depth. We want to leverage scientific innovation by co-designing structural materials that are better able to withstand harsh marine environments and extreme weather events. And we want to add distributed fiber optic sensing to FOSW systems to enable systems to self monitor in real time for potential problems, a capability that could prolong a system’s lifespan and lower operating and maintenance costs. 

Q. How does your team apply fiber-optic sensing to these innovations?

Wu: A fiber cable has a glass core that allows you to send an optical signal at the speed of light; when there is any vibration, strain, or change in temperature of the material that is being monitored, that information will be carried in the light signal that is scattered back. When attached to or embedded within the wind turbine structure, this gives it a “nervous system” which allows it to “hear” and “feel.” The fiber is able to monitor surrounding acoustic signals, such as whale calls, which can help scientists assess potential impacts to large marine mammals from FOSW operations. 

We’ve been testing the deployment of this sensing technology to structural components – such as towers and turbines – to monitor physical and mechanical conditions experienced by the structure itself, like temperature or strain. Our research so far has focused on testing fiber optics on the tower and gearbox, some of the most expensive components where there is benefit to identifying damage before it leads to problems. 

Q. How important is materials science to reducing the cost of floating offshore wind systems?

Wu: By revealing what is happening within a FOSW system in real time, fiber-optic sensing gives us the knowledge needed to develop more resilient, cost-effective materials at the system level. Designing FOSW systems at lower cost and to withstand harsh marine environments requires cutting-edge materials science combined with computing science to produce better materials and to effectively simulate how the materials perform. Materials can be developed to give the structures self-healing capabilities; for example, seawater intruding into a crack in concrete triggers reactions to seal the crack without interventions.

We are partnering with experts in materials science and simulations from the molecular to structural scale to bring about innovations that have great potential for future deep-water floating systems because of their large cost-saving potential, local producibility, better performance, and environmental sustainability. DOE Office of Science user facilities at Berkeley Lab, such as the Molecular Foundry, Advanced Light Source, and National Energy Research Scientific Computing Center (NERSC), play key roles in facilitating innovations in our research. 

Q. These systems are far offshore, making them challenging to access for maintenance. How can technology help track and predict their performance when people aren’t nearby to monitor operations?

Wu: Digital twins are representations of structures made using advanced computer modeling, often jointly with real-time monitoring data, that scientists can use to control, simulate, and monitor how the FOSW system would respond to different weather or marine conditions. For example, we can simulate conditions of a hurricane and see exactly how the system would function under this extreme weather – right from our desktop computers. With real-time data feeding into the digital twins, system response to actual “on-the-water” field conditions can be monitored to support decision-making, for example when to send a crew to conduct system inspection. This could significantly reduce costs by avoiding unnecessary trips, and by allowing proactive maintenance of the system before larger, expensive failures. 

Last summer, our team used shake table testing of an actual turbine at the Pacific Earthquake Engineering Research Center at UC Berkeley’s Richmond Field Station, to test the ability of the fiber optic sensing to monitor how the turbines would respond to wave movements far offshore. The shake test helps evaluate and optimize deployment of sensors which eventually will be sitting on structures in the middle of the ocean and autonomously communicating data to land via fiber cables.

Q. How important is collaboration to reducing the cost of floating offshore wind?

Wu: DOE’s floating offshore wind earthshot has an ambitious goal of 70% cost reduction by 2035. This requires a system-level approach that optimizes all steps through the entire lifecycle of FOSW from material design, structural construction, deployment, operation, and maintenance. Partnering with institutions and industries with different expertise allows us to efficiently develop these new and complex technologies that can help shift the nation’s energy economy to one built on clean, renewable sources.
###

Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 16 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab’s facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy's Office of Science.
 
DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.

Monday, May 8, 2023

Tiny Microbes Could Brew Big Benefits for Green Biomanufacturing

 Berkeley Lab News Release:


Scientists find new route in bacteria to decarbonize industry. The discovery could reduce greenhouse gas emissions from the manufacturing of fuels, drugs, and chemicals.
THERESA DUQUE | (510) 424-2866 | MAY 8, 2023
A team co-led by Berkeley Lab has discovered a metabolic process in bacteria that could enable sustainable alternatives to chemical manufacturing processes that typically rely on fossil fuels. (Credit: artjazz/Shutterstock).
A research team led by Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley has engineered bacteria to produce new-to-nature carbon products that could provide a powerful route to sustainable biochemicals.

The advance – which was recently announced in the journal Nature – uses bacteria to combine natural enzymatic reactions with a new-to-nature reaction called the “carbene transfer reaction.” This work could also one day help reduce industrial emissions because it offers sustainable alternatives to chemical manufacturing processes that typically rely on fossil fuels.

“What we showed in this paper is that we can synthesize everything in this reaction – from natural enzymes to carbenes – inside the bacterial cell. All you need to add is sugar and the cells do the rest,” said Jay Keasling, a principal investigator of the study and CEO of the Department of Energy’s Joint BioEnergy Institute (JBEI).  
During experiments at DOE's Joint BioEnergy Institute, researchers observed an engineered strain of the bacteria Streptomyces as it produced cyclopropanes, high-energy molecules that could potentially be used in the sustainable production of novel bioactive compounds and advanced biofuels. (Image courtesy of Jing Huang).
Carbenes are highly reactive carbon-based chemicals that can be used in many different types of reactions. For decades, scientists have wanted to use carbene reactions in the manufacturing of fuels and chemicals, and in drug discovery and synthesis. 

But these carbene processes could only be carried out in small batches via test tubes and required expensive chemical substances to drive the reaction. 

In the new study, the researchers replaced expensive chemical reactants with natural products that can be produced by an engineered strain of the bacteria Streptomyces. Because the bacteria use sugar to produce chemical products through cellular metabolism, “this work enables us to perform the carbene chemistry without toxic solvents or toxic gases typically used in chemical synthesis,” said first author Jing Huang, a Berkeley Lab postdoctoral researcher in the Keasling Lab. “This biological process is much more environmentally friendly than the way chemicals are synthesized today,” Huang said. 

During experiments at JBEI, the researchers observed the engineered bacterium as it metabolized and converted sugars into the carbene precursor and the alkene substrate. The bacterium also expressed an evolved P450 enzyme that used those chemicals to produce cyclopropanes, high-energy molecules that could potentially be used in the sustainable production of novel bioactive compounds and advanced biofuels. “We can now perform these interesting reactions inside the bacterial cell. The cells produce all of the reagents and the cofactors, which means that you can scale this reaction to very large scales” for mass manufacturing, Keasling said. 

Recruiting bacteria to synthesize chemicals could also play an integral role in reducing carbon emissions, Huang said. According to other Berkeley Lab researchers, close to 50% of greenhouse gas emissions come from the production of chemicals, iron and steel, and cement. Limiting global warming to 1.5 degrees Celsius above pre-industrial levels will require severely cutting greenhouse gas emissions in half by 2030, says a recent report by the Intergovernmental Panel on Climate Change.

Huang said that while this fully integrated system can be envisioned for a large number of carbene donor molecules and alkene substrates, it is not yet ready for commercialization. 

“For every new advance, someone needs to take the first step. And in science, it can take years before you succeed. But you have to keep trying – we can’t afford to give up. I hope our work will inspire others to continue searching for greener, sustainable biomanufacturing solutions,” Huang said. 

Other authors on the paper are Andrew Quest, Pablo Cruz-Morales, Kai Deng, Jose Henrique Pereira, Devon Van Cura, Ramu Kakumanu, Edward E. K. Baidoo, Qingyun Dan, Yan Chen, Christopher J. Petzold, Trent R. Northen, Paul D. Adams, Douglas S. Clark, Emily P. Balskus, John F. Hartwig, and Aindrila Mukhopadhyay.

This work was supported by the DOE Office of Science and DOE Office of Biological and Environmental Research. Additional support was provided by the National Science Foundation. 
###

Tuesday, April 18, 2023

Recycled Aluminum Offers Energy, Emissions and Electric Vehicle Battery Range Savings

 PNNL Lab News Release:


The new manufacturing process produces high-strength aluminum vehicle parts that lower costs and are more environmentally friendly

SHARE

April 18, 2023

RICHLAND, Wash.—Scrap aluminum can now be collected and transformed directly into new vehicle parts using an innovative process being developed by the automotive industry, in particular for electric vehicles. Today, the Department of Energy’s Pacific Northwest National Laboratory, in collaboration with leading mobility technology company Magna, unveils a new manufacturing process that reduces more than 50% of the embodied energy and more than 90% of the carbon dioxide emissions by eliminating the need to mine and refine the same amount of raw aluminum ore. Lightweight aluminum can also help extend EV driving range.

 

This patented and award-winning Shear Assisted Processing and Extrusion (ShAPE™) process collects scrap bits and leftover aluminum trimmings from automotive manufacturing and transforms it directly into suitable material for new vehicle parts. It is now being scaled to make lightweight aluminum parts for EVs.

 

The most recent advancement, described in detail in a new report and in Manufacturing Letters research article, eliminates the need to add newly mined aluminum to the material before using it for new parts. By reducing the cost of recycling aluminum, manufacturers may be able to reduce the overall cost of aluminum components, better enabling them to replace steel.

 

“We showed that aluminum parts formed with the ShAPE process meet automotive industry standards for strength and energy absorption,” said Scott Whalen, a PNNL materials scientist and lead researcher. “The key is that ShAPE process breaks up metal impurities in the scrap without requiring an energy-intensive heat treatment step. This alone saves considerable time and introduces new efficiencies.”

Automakers’ aluminum scrap transforms into new vehicle parts with the PNNL-patented ShAPE manufacturing process. Heat and friction soften the aluminum and transform it from rough metal into a smooth, strong uniform product without a melting step. (Animation by Sara Levine | Pacific Northwest National Laboratory)

The new report and research publications mark the culmination of a four-year partnership with Magna, the largest manufacturer of auto parts in North America. Magna received funding for the collaborative research from DOE’s Vehicle Technologies Office, Lightweight Materials Consortium (LightMAT) Program.

 

“Sustainability is at the forefront of everything we do at Magna,” said Massimo DiCiano, Manager Materials Science at Magna. “From our manufacturing processes to the materials we use, and the ShAPE process is a great proof point of how we’re looking to evolve and create new sustainable solutions for our customers.”

 

Aluminum advantages

Besides steel, aluminum is the most used material in the auto industry. The advantageous properties of aluminum make it an attractive automotive component. Lighter and strong, aluminum is a key material in the strategy to make lightweight vehicles for improved efficiency, being it extending the range of an EV or reducing the battery capacity size. While the automotive industry currently does recycle most of its aluminum, it routinely adds newly mined primary aluminum to it before reusing it, to dilute impurities.

 

Metals manufacturers also rely on a century-old process of pre-heating bricks, or “billets” as they are known in the industry, to temperatures over 1,000°F (550°C) for many hours. The pre-heating step dissolves clusters of impurities such as silicon, magnesium or iron in the raw metal and distributes them uniformly in the billet through a process known as homogenization.

 

By contrast, the ShAPE process accomplishes the same homogenization step in less than a second then transforms the solid aluminum into a finished product in a matter of minutes with no pre-heating step required.

 

“With our partners at Magna, we have reached a critical milestone in the evolution of the ShAPE process,” said Whalen. “We have shown its versatility by creating square, trapezoidal and multi-cell parts that all meet quality benchmarks for strength and ductility.”

Extrusions made from AA6063 industrial scrap by ShAPE producing (a) circular, (b) square, (c) trapezoidal, and (d) two-cell trapezoidal profiles. (Image courtesy Scott Whalen | Pacific Northwest National Laboratory)

For these experiments, the research team worked with an aluminum alloy known as 6063, or architectural aluminum. This alloy is used for variety of automotive components, such as engine cradles, bumper assemblies, frame rails and exterior trim. The PNNL research team examined the extruded shapes using scanning electron microscopy and electron backscatter diffraction, which creates an image of the placement and microstructure of each metal particle within the finished product. The results showed that the ShAPE products are uniformly strong and lack manufacturing defects that could cause parts failure. In particular, the products had no signs of the large clusters of metal—impurities that can cause material deterioration and that have hampered efforts to use secondary recycled aluminum to make new products.

 

The research team is now examining even higher strength aluminum alloys typically used in battery enclosures for electric vehicles.

 

“This innovation is only the first step toward creating a circular economy for recycled aluminum in manufacturing,” said Whalen. “We are now working on including post-consumer waste streams, which could create a whole new market for secondary aluminum scrap.”

 

In addition to Whalen, the PNNL research team included Nicole Overman, Brandon Scott Taysom, Md. Reza-E-Rabby, Mark Bowden and Timothy Skszek. In addition to DiCiano, Magna contributors included Vanni Garbin, Michael Miranda, Thomas Richter, Cangji Shi and Jay Mellis. This work was supported by DOE’s Vehicle Technologies Office, LightMAT Program.

 

The patented ShAPE technology is available for licensing for other applications.

Pacific Northwest National Laboratory draws on its distinguishing strengths in chemistryEarth sciencesbiology and data science to advance scientific knowledge and address challenges in sustainable energy and national securityFounded in 1965, PNNL is operated by Battelle for the U.S. Department of Energy’s Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science. For more information about PNNL, visit PNNL's News Center. Follow us on TwitterFacebookLinkedIn and Instagram.