NREL Teams Up on Three ARPA-E Projects to Optimize Electric Vehicle Battery Management and Controls
Wednesday, January 16, 2013
The U.S. Department of Energy's (DOE)
National Renewable Energy Laboratory (NREL) has joined DOE and research partners
in launching the Advanced Management and Protection of Energy Storage Devices
(AMPED) program with a kick-off meeting in San Francisco. Over the next three
years, NREL engineers will work with teams led by Utah State University, Washington University, and Eaton
Corporation to optimize utilization, life, and cost of lithium-ion (Li-ion)
batteries for electric-drive vehicles (EDVs) through improved battery management
and controls. The three projects are funded under the AMPED program with more
than $7.4 million from DOE's Advanced Research Projects Agency-Energy
(ARPA-E).
"These projects present a great
opportunity for us to build on our recent R&D results and design
improvements supported by DOE's Vehicle Technologies Program and create battery
systems that will let drivers go further and more safely in the next,
longer-lasting generation of electric and hybrid cars," NREL Energy Storage
Group Manager Ahmad Pesaran said.
NREL is a recognized leader in EDV energy
storage R&D. In addition to groundbreaking thermal evaluation and analysis,
NREL's energy storage (ES) modeling, simulation and testing activities include
battery safety assessment, next-generation battery technologies, material
synthesis and research, subsystem analysis, battery second use studies, and
battery computer-aided engineering. Lab research improves ES devices--from
materials to batteries, ultracapacitors and complete ES systems--by uncovering
new ways to enhance thermal performance and lower life-cycle costs. Go to http://www.nrel.gov/vehiclesandfuels/energystorage
for more information on NREL's EDV energy storage R&D efforts.
"NREL's collaboration on this project will allow us to pool our
considerable resources and experience to produce a design that is not only
viable, but will deliver maximum efficiency and performance," said project lead
Prof. Venkat Subramanian, University of Washington's Energy, Environmental &
Chemical Engineering Department.
The ultimate goal of these projects is to make EDVs viable options for a
larger and wider population of drivers. The projects for each team are:
Power Management of Large Battery Packs - Utah State
University ($3 million)
Objectives: Reduction in battery size, 20% longer battery pack
lifetime or 20% reduction in battery pack energy content and 50% increase in
cold temperature charge rate
Researchers in NREL's Center for Transportation Technologies and Systems
(CTTS) will work with the Utah State University team to develop electronic
hardware and control software for an advanced plug-in hybrid electric vehicle
(HEV) battery management system to maximize the lifetime of each cell in a
battery pack. Other project partners include University of Colorado (Boulder and
Colorado Springs) and the Ford Motor Company. Laboratory testing will take place
at both NREL and Ford.
Battery Management System Design - Washington University
($2 million)
Objective: 20% increase in utilization of untapped Li-ion
battery capacity at the cell level
The Washington University team will develop a predictive battery management
system with innovative control hardware that uses advanced mathematical models
to optimize battery performance. The system will project optimal charge and
discharge of batteries in real-time, enhancing battery performance and improving
battery safety, charge-rate, and usable power capacity. NREL's CTTS researchers
will use the lab's breakthrough battery multi-physics models to guide the design
of the control algorithms and will demonstrate the capability of the algorithms
through laboratory testing.
Predictive Battery Management for Hybrid Vehicles
-Eaton Corporation ($2.4 million)
Objective: 50% improvement in fuel economy of heavy-duty HEVs
without sacrificing battery life
Eaton Corporation will collaborate with NREL to develop a power control
system to optimize the operation of commercial-scale hybrid electric vehicles
(HEVs), integrating NREL battery life predictive models with Eaton HEV control
algorithms. The planned approach provides a cost-effective solution that reduces
the size of the battery needed for operating large hybrid electric vehicles with
no loss in battery life or vehicle performance. NREL will perform
hardware-in-the-loop testing in its laboratories to demonstrate the new
system.
ARPA-E's AMPED program is providing a
total of $30 million in funding to 14 research projects to leverage the nation's
brightest scientists, engineers and entrepreneurs to develop breakthrough energy
storage (http://energy.gov/articles/arpa-e-announces-43-million-transformational-energy-storage-projects-advance-electric).These
projects focus on maximizing the potential of existing battery chemistries with
innovations in battery management and storage to advance electric vehicle
technologies and to help improve the efficiency and reliability of the
electrical grid.
"If successful, the advanced sensing,
diagnostic, and control technologies developed under the AMPED program will
allow us to unlock enormous untapped potential in the performance, safety and
lifetime of today's commercial battery systems," ARPA-E Program Director Ilan
Gur said. "My hope is that these cutting-edge projects will accelerate the
impact of vehicle and grid-scale energy storage in reducing our country's
reliance on imported fuels and improving the safety, security and economic
efficiency of our electricity grid."
NREL is the U.S. Department of Energy's
primary national laboratory for renewable energy and energy efficiency research
and development. NREL is operated for DOE by the Alliance for Sustainable
Energy, LLC.
###
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.